Tags: time-series* + anomaly detection* + llm*

0 bookmark(s) - Sort by: Date ↓ / Title /

  1. Article discusses a study at MIT Data to AI Lab comparing large language models (LLMs) with other methods for detecting anomalies in time series data. Despite losing to other methods, LLMs show potential for zero-shot learning and direct integration in deployment, offering efficiency gains.
  2. MIT researchers have developed a method using large language models to detect anomalies in complex systems without the need for training. The approach, called SigLLM, converts time-series data into text-based inputs for the language model to process. Two anomaly detection approaches, Prompter and Detector, were developed and showed promising results in initial tests.

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: tagged with "time-series+anomaly detection+llm"

About - Propulsed by SemanticScuttle