The llmsherpa project provides APIs to accelerate Large Language Model (LLM) projects. It includes features like LayoutPDFReader for PDF text parsing, smart chunking for vector search and Retrieval Augmented Generation, and table analysis. It is open-sourced under Apache 2.0 license.
This article explains Retrieval Augmented Generation (RAG), a method to reduce the risk of hallucinations in Large Language Models (LLMs) by limiting the context in which they generate answers. RAG is demonstrated using txtai, an open-source embeddings database for semantic search, LLM orchestration, and language model workflows.