0 bookmark(s) - Sort by: Date ↓ / Title /
This tutorial details how to use FastAPI-MCP to convert a FastAPI endpoint (fetching US National Park alerts) into an MCP-compatible server. It covers environment setup, app creation, testing, and MCP server implementation with Cursor IDE.
This article details a comparison between Model Context Protocol (MCP) and Function Calling, two methods for integrating Large Language Models (LLMs) with external systems. It covers their architectures, security models, scalability, and suitable use cases, highlighting the strengths and weaknesses of each approach.
MCP is best suited for robust, complex applications within secure enterprise environments, while Function Calling excels in straightforward, dynamic task execution scenarios. The choice depends on the specific needs, security requirements, scalability needs, and resource availability of the project.
This article explores the Model Context Protocol (MCP), an open protocol designed to standardize AI interaction with tools and data, addressing the fragmentation in AI agent ecosystems. It details current use cases, future possibilities, and challenges in adopting MCP.
Model Context Protocol (MCP) is a bridging technology for AI agents and APIs. It standardizes API access for AI agents, making it a universal method for AI agents to trigger external actions.
Llama Stack v0.1.0 introduces a stable API release enabling developers to build RAG applications and agents, integrate with various tools, and use telemetry for monitoring and evaluation. This release provides a comprehensive interface, rich provider ecosystem, and multiple developer interfaces, along with sample applications for Python, iOS, and Android.
First / Previous / Next / Last
/ Page 1 of 0