A tutorial on building a private, offline Retrieval Augmented Generation (RAG) system using Ollama for embeddings and language generation, and FAISS for vector storage, ensuring data privacy and control.
1. **Document Loader:** Extracts text from various file formats (PDF, Markdown, HTML) while preserving metadata like source and page numbers for accurate citations.
2. **Text Chunker:** Splits documents into smaller text segments (chunks) to manage token limits and improve retrieval accuracy. It uses overlapping and sentence boundary detection to maintain context.
3. **Embedder:** Converts text chunks into numerical vectors (embeddings) using the `nomic-embed-text` model via Ollama, which runs locally without internet access.
4. **Vector Database:** Stores the embeddings using FAISS (Facebook AI Similarity Search) for fast similarity search. It uses cosine similarity for accurate retrieval and saves the database to disk for quick loading in future sessions.
5. **Large Language Model (LLM):** Generates answers using the `llama3.2` model via Ollama, also running locally. It takes the retrieved context and the user's question to produce a response with citations.
6. **RAG System Orchestrator:** Coordinates the entire workflow, managing the ingestion of documents (loading, chunking, embedding, storing) and the querying process (retrieving relevant chunks, generating answers).
This article details a method for converting PDFs to Markdown using a local LLM (Gemma 3 via Ollama), focusing on privacy and efficiency. It involves rendering PDF pages as images and then using the LLM for content extraction, even from scanned PDFs.
A comparison of frameworks, models, and costs for deploying Llama models locally and privately.
- Four tools were analyzed: HuggingFace, vLLM, Ollama, and llama.cpp.
- HuggingFace has a wide range of models but struggles with quantized models.
- vLLM is experimental and lacks full support for quantized models.
- Ollama is user-friendly but has some customization limitations.
- llama.cpp is preferred for its performance and customization options.
- The analysis focused on llama.cpp and Ollama, comparing speed and power consumption across different quantizations.
A step-by-step guide to run Llama3 locally with Python. Discusses the benefits of running local LLMs, including data privacy, cost-effectiveness, customization, offline functionality, and unrestricted use.