A user is seeking advice on deploying a new server with 4x H100 GPUs (320GB VRAM) for on-premise AI workloads. They are considering a Kubernetes-based deployment with RKE2, Nvidia GPU Operator, and tools like vLLM, llama.cpp, and Litellm. They are also exploring the option of GPU pass-through with a hypervisor. The post details their current infrastructure and asks for potential gotchas or best practices.
A developer recounts how Claude Code helped resolve a critical memory usage issue in an API endpoint, reducing memory usage by 99% and providing detailed solutions and evidence.