klotz: 120b*

0 bookmark(s) - Sort by: Date ↓ / Title / - Bookmarks from other users for this tag

  1. A user shares their experience running the GPT-OSS 120b model on Ollama with an i7 6700, 64GB DDR4 RAM, RTX 3090, and a 1TB SSD. They note slow initial token generation but acceptable performance overall, highlighting it's possible on a relatively modest setup. The discussion includes comparisons to other hardware configurations, optimization techniques (llama.cpp), and the model's quality.

    >I have a 3090 with 64gb ddr4 3200 RAM and am getting around 50 t/s prompt processing speed and 15 t/s generation speed using the following:
    >
    >`llama-server -m <path to gpt-oss-120b> --ctx-size 32768 --temp 1.0 --top-p 1.0 --jinja -ub 2048 -b 2048 -ngl 99 -fa 'on' --n-cpu-moe 24`
    > This about fills up my VRAM and RAM almost entirely. For more wiggle room for other applications use `--n-cpu-moe 26`.
  2. A user demonstrates how to run a 120B model efficiently on hardware with only 8GB VRAM by offloading MOE layers to CPU and keeping only attention layers on GPU, achieving high performance with minimal VRAM usage.
  3. A 120 billion parameter OpenAI model can now run on consumer hardware thanks to the Mixture of Experts (MoE) technique, which significantly reduces memory requirements and allows processing on CPUs while offloading key parts to modest GPUs.

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: Tags: 120b

About - Propulsed by SemanticScuttle