This article details how to run a 120B parameter LLM locally with 24GB of VRAM and 64GB of system RAM, using a setup with Proxmox LXCs, Whisper for voice transcription, and integration with Home Assistant for smart home automation.
This article details how the author successfully ran OpenAI's Codex CLI against a gpt-oss:120b model hosted on an NVIDIA DGX Spark, accessed through a Tailscale network. It covers the setup of Tailscale, Ollama configuration, and the process of running the Codex CLI with the remote model, including building a Space Invaders game.
A detailed guide for running the new gpt-oss models locally with the best performance using `llama.cpp`. The guide covers a wide range of hardware configurations and provides CLI argument explanations and benchmarks for Apple Silicon devices.
oLLM is a Python library for running large-context Transformers on NVIDIA GPUs by offloading weights and KV-cache to SSDs. It supports models like Llama-3, GPT-OSS-20B, and Qwen3-Next-80B, enabling up to 100K tokens of context on 8-10 GB GPUs without quantization.
An in-depth look at the architecture of OpenAI's GPT-OSS models, detailing tokenization, embeddings, transformer blocks, Mixture of Experts, attention mechanisms (GQA and RoPE), and quantization techniques.
A user shares their experience running the GPT-OSS 120b model on Ollama with an i7 6700, 64GB DDR4 RAM, RTX 3090, and a 1TB SSD. They note slow initial token generation but acceptable performance overall, highlighting it's possible on a relatively modest setup. The discussion includes comparisons to other hardware configurations, optimization techniques (llama.cpp), and the model's quality.
>I have a 3090 with 64gb ddr4 3200 RAM and am getting around 50 t/s prompt processing speed and 15 t/s generation speed using the following:
>
>`llama-server -m <path to gpt-oss-120b> --ctx-size 32768 --temp 1.0 --top-p 1.0 --jinja -ub 2048 -b 2048 -ngl 99 -fa 'on' --n-cpu-moe 24`
> This about fills up my VRAM and RAM almost entirely. For more wiggle room for other applications use `--n-cpu-moe 26`.
This blog post details a fine-tuning workflow for the gpt-oss model that recovers post-training accuracy while retaining the performance benefits of FP4. It involves supervised fine-tuning (SFT) on an upcasted BF16 version of the model, followed by quantization-aware training (QAT) using NVIDIA TensorRT Model Optimizer. The article also discusses the benefits of using NVFP4 for even better convergence and accuracy recovery.
OpenAI's release of GPT-OSS marks their first major open source LLM since GPT-2, featuring improvements in reasoning, tool usage, and problem-solving capabilities. The article explores its architecture, message formatting, reasoning modes, and tokenizer details.
A user demonstrates how to run a 120B model efficiently on hardware with only 8GB VRAM by offloading MOE layers to CPU and keeping only attention layers on GPU, achieving high performance with minimal VRAM usage.