klotz: machine learning*

"Machine learning is a subset of artificial intelligence in the field of computer science that often uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed.

https://en.wikipedia.org/wiki/Machine_learning

0 bookmark(s) - Sort by: Date ↓ / Title / - Bookmarks from other users for this tag

  1. AAAI survey finds that most respondents are sceptical that the technology underpinning large-language models is sufficient for artificial general intelligence.

    >"More than three-quarters of respondents said that enlarging current AI systems ― an approach that has been hugely successful in enhancing their performance over the past few years ― is unlikely to lead to what is known as artificial general intelligence (AGI). An even higher proportion said that neural networks, the fundamental technology behind generative AI, alone probably cannot match or surpass human intelligence. And the very pursuit of these capabilities also provokes scepticism: less than one-quarter of respondents said that achieving AGI should be the core mission of the AI research community.
    2025-03-05 Tags: , , , , , by klotz
  2. Qodo-Embed-1-1.5B is a state-of-the-art code embedding model designed for retrieval tasks in the software development domain. It supports multiple programming languages and is optimized for natural language-to-code and code-to-code retrieval, making it highly effective for applications such as code search and retrieval-augmented generation.
  3. Qodo releases Qodo-Embed-1-1.5B, an open-source code embedding model that outperforms competitors from OpenAI and Salesforce, enhancing code search, retrieval, and understanding for enterprise development teams.
  4. This article discusses the use of variational autoencoders (VAEs) to generate synthetic data as a solution to the impending data scarcity for training large language models. It explores how synthetic data can address issues like imbalanced datasets, particularly using the UCI Adult dataset, by generating synthetic samples to balance the dataset and improve classification accuracy.
  5. This article explores the application of reinforcement learning (RL) to Partial Differential Equations (PDEs), highlighting the complexity and challenges involved in controlling systems described by PDEs compared to Ordinary Differential Equations (ODEs). It discusses various approaches, including genetic programming and neural network-based methods, and presents experimental results on controlling PDE systems like the diffusion equation and Kuramoto–Sivashinsky equation. The author emphasizes the potential of machine learning to improve understanding and control of PDE systems, which have wide-ranging applications in fields like fluid dynamics, thermodynamics, and engineering.
  6. SmolVLM2 represents a shift in video understanding technology by introducing efficient models that can run on various devices, from phones to servers. The release includes models of three sizes (2.2B, 500M, and 256M) with Python and Swift API support. These models offer video understanding capabilities with reduced memory consumption, supported by a suite of demo applications for practical use.
  7. The article delves into how large language models (LLMs) store facts, focusing on the role of multi-layer perceptrons (MLPs) in this process. It explains the mechanics of MLPs, including matrix multiplication, bias addition, and the Rectified Linear Unit (ReLU) function, using the example of encoding the fact that Michael Jordan plays basketball. The article also discusses the concept of superposition, which allows models to store a vast number of features by utilizing nearly perpendicular directions in high-dimensional spaces.
  8. The article explores the concept of Retrieval-Augmented Generation (RAG) using SQLite, specifically with the sqlite-vec extension and the OpenAI API. It outlines a simplified approach to RAG, moving away from complex frameworks and cloud vector databases, using SQLite's virtual tables for vector search and semantic understanding.
  9. Sawmills AI has introduced a smart telemetry data management platform aimed at reducing costs and improving data quality for enterprise observability. By acting as a middleware layer that uses AI and ML to optimize telemetry data before it reaches vendors like Datadog and Splunk, Sawmills helps companies manage data efficiently, retain data sovereignty, and reduce unnecessary data processing costs.
  10. The article explores the architectural changes that enable DeepSeek's models to perform well with fewer resources, focusing on Multi-Head Latent Attention (MLA). It discusses the evolution of attention mechanisms, from Bahdanau to Transformer's Multi-Head Attention (MHA), and introduces Grouped-Query Attention (GQA) as a solution to MHA's memory inefficiencies. The article highlights DeepSeek's competitive performance despite lower reported training costs.

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: Tags: machine learning

About - Propulsed by SemanticScuttle