klotz: umap*

0 bookmark(s) - Sort by: Date โ†“ / Title / - Bookmarks from other users for this tag

  1. This article details seven advanced feature engineering techniques using LLM embeddings to improve machine learning model performance. It covers techniques like dimensionality reduction, semantic similarity, clustering, and more.

    The article explores how to leverage LLM embeddings for advanced feature engineering in machine learning, going beyond simple similarity searches. It details seven techniques:

    1. **Embedding Arithmetic:** Performing mathematical operations (addition, subtraction) on embeddings to represent concepts like "positive sentiment - negative sentiment = overall sentiment".
    2. **Embedding Clustering:** Using clustering algorithms (like k-means) on embeddings to create categorical features representing groups of similar text.
    3. **Embedding Dimensionality Reduction:** Reducing the dimensionality of embeddings using techniques like PCA or UMAP to create more compact features while preserving important information.
    4. **Embedding as Input to Tree-Based Models:** Directly using embedding vectors as features in tree-based models like Random Forests or Gradient Boosting. The article highlights the importance of careful handling of high-dimensional data.
    5. **Embedding-Weighted Averaging:** Calculating weighted averages of embeddings based on relevance scores (e.g., TF-IDF) to create a single, representative embedding for a document.
    6. **Embedding Difference:** Calculating the difference between embeddings to capture changes or relationships between texts (e.g., before/after edits, question/answer pairs).
    7. **Embedding Concatenation:** Combining multiple embeddings (e.g., title and body of a document) to create a richer feature representation.
  2. The author discusses a shift in approach to clustering mixed data, advocating for starting with the simpler Gower distance metric before resorting to more complex embedding techniques like UMAP. They introduce 'Gower Express', an optimized and accelerated implementation of Gower.
  3. This page details the command-line utility for the Embedding Atlas, a tool for exploring large text datasets with metadata. It covers installation, data loading (local and Hugging Face), visualization of embeddings using SentenceTransformers and UMAP, and usage instructions with available options.
  4. A visual representation of papers on ArXiv using UMAP and nomic-embed.
    2024-10-12 Tags: , , , , , by klotz
  5. The article explains semantic text chunking, a technique for automatically grouping similar pieces of text to be used in pre-processing stages for Retrieval Augmented Generation (RAG) or similar applications. It uses visualizations to understand the chunking process and explores extensions involving clustering and LLM-powered labeling.
  6. 2021-09-15 Tags: , , by klotz
  7. 2021-09-08 Tags: , , , by klotz
  8. 2019-10-04 Tags: , , by klotz

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: Tags: umap

About - Propulsed by SemanticScuttle