klotz: llm* + attention*

Bookmarks on this page are managed by an admin user.

0 bookmark(s) - Sort by: Date ↓ / Title / - Bookmarks from other users for this tag

  1. In this paper, the authors propose a new position encoding method, Contextual Position Encoding (CoPE), that allows positions to be conditioned on context by incrementing position only on certain tokens determined by the model. This allows more general position addressing such as attending to the $i$-th particular word, noun, or sentence. The paper demonstrates that CoPE can solve selective copy, counting, and Flip-Flop tasks where popular position embeddings fail, and improves perplexity on language modeling and coding tasks.
    2024-06-02 Tags: , , , by klotz
  2. This article is part of a series titled ‘LLMs from Scratch’, a complete guide to understanding and building Large Language Models (LLMs). In this article, we discuss the self-attention mechanism and how it is used by transformers to create rich and context-aware transformer embeddings.

    The Self-Attention mechanism is used to add context to learned embeddings, which are vectors representing each word in the input sequence. The process involves the following steps:

    1. Learned Embeddings: These are the initial vector representations of words, learned during the training phase. The weights matrix, storing the learned embeddings, is stored in the first linear layer of the Transformer architecture.

    2. Positional Encoding: This step adds positional information to the learned embeddings. Positional information helps the model understand the order of the words in the input sequence, as transformers process all words in parallel, and without this information, they would lose the order of the words.

    3. Self-Attention: The core of the Self-Attention mechanism is to update the learned embeddings with context from the surrounding words in the input sequence. This mechanism determines which words provide context to other words, and this contextual information is used to produce the final contextualized embeddings.
  3. This paper introduces Cross-Layer Attention (CLA), an extension of Multi-Query Attention (MQA) and Grouped-Query Attention (GQA) for reducing the size of the key-value cache in transformer-based autoregressive large language models (LLMs). The authors demonstrate that CLA can reduce the cache size by another 2x while maintaining nearly the same accuracy as unmodified MQA, enabling inference with longer sequence lengths and larger batch sizes.

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: Tags: llm + attention

About - Propulsed by SemanticScuttle