The article discusses using Large Language Model (LLM) embeddings as features in traditional machine learning models built with scikit-learn. It covers the process of generating embeddings from text data using models like Sentence Transformers, and how these embeddings can be combined with existing features to improve model performance. It details practical steps including loading data, creating embeddings, and integrating them into a scikit-learn pipeline for tasks like classification.
Variable importance measures for random forests have been receiving increased attention as a means of variable selection in many classification tasks in bioinformatics and related scientific fields, for instance to select a subset of genetic markers relevant for the prediction of a certain disease. We show that random forest variable importance measures are a sensible means for variable selection in many applications, but are not reliable in situations where potential predictor variables vary in their scale of measurement or their number of categories. This is particularly important in genomics and computational biology, where predictors often include variables of different types, for example when predictors include both sequence data and continuous variables such as folding energy, or when amino acid sequence data show different numbers of categories.