klotz: llama* + gpu*

0 bookmark(s) - Sort by: Date ↓ / Title / - Bookmarks from other users for this tag

  1. A discussion post on Reddit's LocalLLaMA subreddit about logging the output of running models and monitoring performance, specifically for debugging errors, warnings, and performance analysis. The post also mentions the need for flags to output logs as flat files, GPU metrics (GPU utilization, RAM usage, TensorCore usage, etc.) for troubleshooting and analytics.
  2. Explanation of the new k-quant methods
    The new methods available are:

    GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
    GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
    GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
    GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
    GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
    GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: Tags: llama + gpu

About - Propulsed by SemanticScuttle