This article explores the use of word2vec and GloVe algorithms for concept analysis within text corpora. It discusses the history of word2vec, its ability to perform semantic arithmetic, and compares it with the GloVe algorithm.
Exploratory data analysis (EDA) is a powerful technique to understand the structure of word embeddings, the basis of large language models. In this article, we'll apply EDA to GloVe word embeddings and find some interesting insights.
- Embeddings transform words and sentences into sequences of numbers for computers to understand language.
- This technology powers tools like Siri, Alexa, Google Translate, and generative AI systems like ChatGPT, Bard, and DALL-E.
- In the early days, embeddings were crafted by hand, which was time-consuming and couldn't adapt to language nuances easily.
- The 3D hand-crafted embedding app provides an interactive experience to understand this concept.
- The star visualization method offers an intuitive way to understand word embeddings.
- Machine learning models like Word2Vec and GloVe revolutionized the generation of word embeddings from large text datasets.
- Universal Sentence Encoder (USE) extends the concept of word embeddings to entire sentences.
- TensorFlow Projector is an advanced tool to interactively explore high-dimensional data like word and sentence embeddings.
from gensim.scripts.glove2word2vec import glove2word2vec
glove2word2vec(glove_input_file=file, word2vec_output_file="gensim_glove_vectors.txt")
from gensim.models.keyedvectors import KeyedVectors
model = KeyedVectors.load_word2vec_format("gensim_glove_vectors.txt", binary=False)