Tags: cpu*

0 bookmark(s) - Sort by: Date ↓ / Title /

  1. This article explains how to accurately quantize a Large Language Model (LLM) and convert it to the GGUF format for efficient CPU inference. It covers using an importance matrix (imatrix) and K-Quantization method with Gemma 2 Instruct as an example, while highlighting its applicability to other models like Qwen2, Llama 3, and Phi-3.
    2024-09-14 Tags: , , , , , by klotz
  2. 2024-01-18 Tags: , by klotz
  3. 2023-12-24 Tags: , , , , by klotz
  4. 2023-08-28 Tags: , , , by klotz
  5. 2023-08-03 Tags: , , , by klotz
  6. 2023-07-22 Tags: , , , , , , by klotz
  7. 2023-06-25 Tags: , , , by klotz
  8. 2023-06-14 Tags: , , , by klotz
  9. 2023-06-09 Tags: , , , , , by klotz
  10. Explanation of the new k-quant methods
    The new methods available are:

    GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
    GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
    GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
    GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
    GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
    GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: tagged with "cpu"

About - Propulsed by SemanticScuttle