Tags: rag* + nlp* + llm*

0 bookmark(s) - Sort by: Date ↓ / Title /

  1. This article discusses how traditional machine learning methods, particularly outlier detection, can be used to improve the precision and efficiency of Retrieval-Augmented Generation (RAG) systems by filtering out irrelevant queries before document retrieval.
  2. Researchers from Cornell University developed a technique called 'contextual document embeddings' to improve the performance of Retrieval-Augmented Generation (RAG) systems, enhancing the retrieval of relevant documents by making embedding models more context-aware.

    Standard methods like bi-encoders often fail to account for context-specific details, leading to poor performance in application-specific datasets. Contextual document embeddings address this by enhancing the sensitivity of the embedding model to subtle differences in documents, particularly in specialized domains.

    The researchers proposed two complementary methods to improve bi-encoders:

    - Modifying the training process using contrastive learning to distinguish between similar documents.
    - Modifying the bi-encoder architecture to incorporate corpus context during the embedding process.

    These modifications allow the model to capture both the general context and specific details of documents, leading to better performance, especially in out-of-domain scenarios. The new technique has shown consistent improvements over standard bi-encoders and can be adapted for various applications beyond text-based models.
    2024-10-10 Tags: , , , by klotz
  3. Foundational concepts, practical implementation of semantic search, and the workflow of RAG, highlighting its advantages and versatile applications.

    The article provides a step-by-step guide to implementing a basic semantic search using TF-IDF and cosine similarity. This includes preprocessing steps, converting text to embeddings, and searching for relevant documents based on query similarity.
    2024-10-04 Tags: , , , , , by klotz
  4. The article explains semantic text chunking, a technique for automatically grouping similar pieces of text to be used in pre-processing stages for Retrieval Augmented Generation (RAG) or similar applications. It uses visualizations to understand the chunking process and explores extensions involving clustering and LLM-powered labeling.
  5. This repository showcases various advanced techniques for Retrieval-Augmented Generation (RAG) systems. RAG systems combine information retrieval with generative models to provide accurate and contextually rich responses.
  6. This article discusses Retrieval-Augmented Generation (RAG) models, a new approach that addresses the limitations of traditional models in knowledge-intensive Natural Language Processing (NLP) tasks. RAG models combine parametric memory from pre-trained seq2seq models with non-parametric memory from a dense vector index of Wikipedia, enabling dynamic knowledge access and integration.
  7. ColBERT is a new way of scoring passage relevance using a BERT language model that substantially solves the problems with dense passage retrieval.

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: tagged with "rag+nlp+llm"

About - Propulsed by SemanticScuttle