Tags: machine learning*

"Machine learning is a subset of artificial intelligence in the field of computer science that often uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed.

https://en.wikipedia.org/wiki/Machine_learning

0 bookmark(s) - Sort by: Date ↓ / Title /

  1. >"TL;DR: We unify over 23 methods in contrastive learning, dimensionality reduction, spectral clustering, and supervised learning with a single equation."

    >"As the field of representation learning grows, there has been a proliferation of different loss functions to solve different classes of problems. We introduce a single information-theoretic equation that generalizes a large collection of mod- ern loss functions in machine learning. In particular, we introduce a framework that shows that several broad classes of machine learning methods are precisely minimizing an integrated KL divergence between two conditional distributions: the supervisory and learned representations. This viewpoint exposes a hidden information geometry underlying clustering, spectral methods, dimensionality re- duction, contrastive learning, and supervised learning. This framework enables the development of new loss functions by combining successful techniques from across the literature. We not only present a wide array of proofs, connecting over 23 different approaches, but we also leverage these theoretical results to create state-of-the-art unsupervised image classifiers that achieve a +8% improvement over the prior state-of-the-art on unsupervised classification on ImageNet-1K. We also demonstrate that I-Con can be used to derive principled debiasing methods which improve contrastive representation learners."
  2. Optuna is an open-source hyperparameter optimization framework designed to automate the hyperparameter search process for machine learning models. It supports various frameworks like TensorFlow, Keras, Scikit-Learn, XGBoost, and LightGBM, offering features like eager search spaces, state-of-the-art algorithms, and easy parallelization.
  3. This example demonstrates Density-Based Spatial Clustering of Applications with Noise (DBSCAN) using scikit-learn, showing how to generate synthetic clusters, compute DBSCAN clustering, and visualize the results, including core and non-core samples.
  4. DeepMind researchers propose a new 'streams' approach to AI development, focusing on experiential learning and autonomous interaction with the world, moving beyond the limitations of current large language models and potentially surpassing human intelligence.
  5. Proceedings from the Thirty-Ninth AAAI Conference on Artificial Intelligence, including papers from AAAI-25, IAAI-25, and EAAI-25. The conference covered topics like machine learning, natural language processing, game theory, and human-AI interaction, with a focus on bridging different areas of AI and related disciplines.
  6. Details the development and release of DeepCoder-14B-Preview, a 14B parameter code reasoning model achieving performance comparable to o3-mini through reinforcement learning, along with the dataset, code, and system optimizations used in its creation.
  7. This article details a method for training large language models (LLMs) for code generation using a secure, local WebAssembly-based code interpreter and reinforcement learning with Group Relative Policy Optimization (GRPO). It covers the setup, training process, evaluation, and potential next steps.
  8. Newsweek interview with Yann LeCun, Meta's chief AI scientist, detailing his skepticism of current LLMs and his focus on Joint Embedding Predictive Architecture (JEPA) as the future of AI, emphasizing world modeling and planning capabilities.
  9. Ryan speaks with Edo Liberty, Founder and CEO of Pinecone, about building vector databases, the power of embeddings, the evolution of RAG, and fine-tuning AI models.
  10. This article examines the dual nature of Generative AI in cybersecurity, detailing how it can be exploited by cybercriminals and simultaneously used to enhance defenses. It covers the history of AI, the emergence of GenAI, potential threats, and mitigation strategies.

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: tagged with "machine learning"

About - Propulsed by SemanticScuttle