This article details seven pre-built n8n workflows designed to streamline common data science tasks, including data extraction, cleaning, model training, and deployment.
This practical guide uses SERP comparisons and Python to group keywords by intent, faster and more intuitively.
Optuna is an open-source hyperparameter optimization framework designed to automate the hyperparameter search process for machine learning models. It supports various frameworks like TensorFlow, Keras, Scikit-Learn, XGBoost, and LightGBM, offering features like eager search spaces, state-of-the-art algorithms, and easy parallelization.
Sakana AI introduces The AI Scientist, a system enabling foundation models like LLMs to perform scientific research independently, automating the entire research lifecycle.
• Continuous Integration (CI) and Continuous Deployment (CD) pipelines for Machine Learning (ML) applications
• Importance of CI/CD in ML lifecycle
• Designing CI/CD pipelines for ML models
• Automating model training, deployment, and monitoring
• Overview of tools and platforms used for CI/CD in ML
The paper proposes a two-phase framework called TnT-LLM to automate the process of end-to-end label generation and assignment for text mining using large language models, where LLMs produce and refine a label taxonomy iteratively using a zero-shot, multi-stage reasoning approach, and are used as data labelers to yield training samples for lightweight supervised classifiers. The framework is applied to the analysis of user intent and conversational domain for Bing Copilot, achieving accurate and relevant label taxonomies and a favorable balance between accuracy and efficiency for classification at scale.