0 bookmark(s) - Sort by: Date ↓ / Title /
ByteDance Research has released DAPO (Dynamic Sampling Policy Optimization), an open-source reinforcement learning system for LLMs, aiming to improve reasoning abilities and address reproducibility issues. DAPO includes innovations like Clip-Higher, Dynamic Sampling, Token-level Policy Gradient Loss, and Overlong Reward Shaping, achieving a score of 50 on the AIME 2024 benchmark with the Qwen2.5-32B model.
The article discusses the implications of DeepSeek's R1 model launch, highlighting five key lessons: the shift from pattern recognition to reasoning in AI models, the changing economics of AI, the coexistence of proprietary and open-source models, innovation driven by silicon scarcity, and the ongoing advantages of proprietary models despite DeepSeek's impact.
First / Previous / Next / Last
/ Page 1 of 0