klotz: decision tree*

0 bookmark(s) - Sort by: Date ↓ / Title / - Bookmarks from other users for this tag

  1. The article showcases concise Python code snippets (one-liners) for common machine learning tasks like data splitting, standardization, model training (linear regression, logistic regression, decision tree, random forest), and prediction, leveraging libraries such as scikit-learn.

    | **#** | **One-Liner** | **Description** | **Library** | **Use Case** |
    |-----|-----------------------------------------------------|-------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|
    | 1 | `from sklearn.datasets import load_iris; X, y = load_iris(return_X_y=True)` | Loads the Iris dataset, a classic for classification. | scikit-learn | Loading a standard dataset. |
    | 2 | `from sklearn.model_selection import train_test_split; X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)` | Splits the dataset into training and testing sets. | scikit-learn | Preparing data for model training & evaluation.|
    | 3 | `from sklearn.linear_model import LogisticRegression; model = LogisticRegression(random_state=1)` | Creates a Logistic Regression model. | scikit-learn | Binary Classification. |
    | 4 | `model.fit(X_train, y_train)` | Trains the Logistic Regression model. | scikit-learn | Model training. |
    | 5 | `y_pred = model.predict(X_test)` | Predicts labels for the test dataset. | scikit-learn | Making predictions. |
    | 6 | `from sklearn.metrics import accuracy_score; accuracy = accuracy_score(y_test, y_pred)` | Calculates the accuracy of the model. | scikit-learn | Evaluating model performance. |
    | 7 | `import pandas as pd; df = pd.DataFrame(X, columns=iris.feature_names)` | Creates a Pandas DataFrame from the Iris dataset features. | Pandas | Data manipulation and analysis. |
    | 8 | `df 'target' » = y` | Adds the target variable to the DataFrame. | Pandas | Combining features and labels. |
    | 9 | `df.head()` | Displays the first few rows of the DataFrame. | Pandas | Inspecting the data. |
    | 10 | `df.describe()` | Generates descriptive statistics of the DataFrame. | Pandas | Understanding data distribution. |
  2. Additive Decision Trees are a variation of standard decision trees, constructed in a way that can often allow them to be more accurate, more interpretable, or both. This article explains the intuition behind Additive Decision Trees and how they can be constructed.

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: Tags: decision tree

About - Propulsed by SemanticScuttle