A guide on how to use OpenAI embeddings and clustering techniques to analyze survey data and extract meaningful topics and actionable insights from the responses.
The process involves transforming textual survey responses into embeddings, grouping similar responses through clustering, and then identifying key themes or topics to aid in business improvement.
Researchers from Cornell University developed a technique called 'contextual document embeddings' to improve the performance of Retrieval-Augmented Generation (RAG) systems, enhancing the retrieval of relevant documents by making embedding models more context-aware.
Standard methods like bi-encoders often fail to account for context-specific details, leading to poor performance in application-specific datasets. Contextual document embeddings address this by enhancing the sensitivity of the embedding model to subtle differences in documents, particularly in specialized domains.
The researchers proposed two complementary methods to improve bi-encoders:
- Modifying the training process using contrastive learning to distinguish between similar documents.
- Modifying the bi-encoder architecture to incorporate corpus context during the embedding process.
These modifications allow the model to capture both the general context and specific details of documents, leading to better performance, especially in out-of-domain scenarios. The new technique has shown consistent improvements over standard bi-encoders and can be adapted for various applications beyond text-based models.
Alibaba Cloud has developed a new tool called TAAT that analyzes log file timestamps to improve server fault prediction and detection. The tool, which combines machine learning with timestamp analysis, saw a 10% improvement in fault prediction accuracy.
This article explains BERT, a language model designed to understand text rather than generate it. It discusses the transformer architecture BERT is based on and provides a step-by-step guide to building and training a BERT model for sentiment analysis.
This article provides a comparative analysis of popular embedding libraries for generative AI, evaluating their strengths, limitations, and suitability for different use cases.
A Github Gist containing a Python script for text classification using the TxTail API
This tutorial covers fine-tuning BERT for sentiment analysis using Hugging Face Transformers. Learn to prepare data, set up environment, train and evaluate the model, and make predictions.
In this article, we will explore various aspects of BERT, including the landscape at the time of its creation, a detailed breakdown of the model architecture, and writing a task-agnostic fine-tuning pipeline, which we demonstrated using sentiment analysis. Despite being one of the earliest LLMs, BERT has remained relevant even today, and continues to find applications in both research and industry.
This article explains how to use the Sentence Transformers library to finetune and train embedding models for a variety of applications, such as retrieval augmented generation, semantic search, and semantic textual similarity. It covers the training components, dataset format, loss function, training arguments, evaluators, and trainer.
A surprising experiment to show that the devil is in the details