klotz: reddit* + llm*

0 bookmark(s) - Sort by: Date ↓ / Title / - Bookmarks from other users for this tag

  1. This post discusses the limitations of using cosine similarity for compatibility matching, specifically in the context of a dating app. The author found that high cosine similarity scores didn't always translate to actual compatibility due to the inability of embeddings to capture dealbreaker preferences. They improved results by incorporating structured features and hard filters.
  2. Based on the discussion, /u/septerium achieved optimal performance for GLM 4.7 Flash (UD-Q6_K_XL) on an RTX 5090 using these specific settings and parameters:
    - GPU: NVIDIA RTX 5090.
    - 150 tokens/s
    - Context: 48k tokens squeezed into VRAM.
    - UD-Q6_K_XL (Unsloth quantized GGUF).
    - Flash Attention: Enabled (-fa on).
    - Context Size: 48,000 (--ctx-size 48000).
    - GPU Layers: 99 (-ngl 99) to ensure the entire model runs on the GPU.
    - Sampler & Inference Parameters
    - Temperature: 0.7 (recommended by Unsloth for tool calls).
    - Top-P: 1.0.
    - Min-P: 0.01.
    - Repeat Penalty: Must be disabled (llama.cpp does this by default, but users warned other platforms might not).
  3. LLMs are powerful for understanding user input and generating human‑like text, but they are not reliable arbiters of logic. A production‑grade system should:

    - Isolate the LLM to language tasks only.
    - Put all business rules and tool orchestration in deterministic code.
    - Validate every step with automated tests and logging.
    - Prefer local models for sensitive domains like healthcare.

    | **Issue** | **What users observed** | **Common solutions** |
    |-----------|------------------------|----------------------|
    | **Hallucinations & false assumptions** | LLMs often answer without calling the required tool, e.g., claiming a doctor is unavailable when the calendar shows otherwise. | Move decision‑making out of the model. Let the code decide and use the LLM only for phrasing or clarification. |
    | **Inconsistent tool usage** | Models agree to user requests, then later report the opposite (e.g., confirming an appointment but actually scheduling none). | Enforce deterministic tool calls first, then let the LLM format the result. Use “always‑call‑tool‑first” guards in the prompt. |
    | **Privacy concerns** | Sending patient data to cloud APIs is risky. | Prefer self‑hosted/local models (e.g., LLaMA, Qwen) or keep all data on‑premises. |
    | **Prompt brittleness** | Adding more rules can make prompts unstable; models still improvise. | Keep prompts short, give concrete examples, and test with a structured evaluation pipeline. |
    | **Evaluation & monitoring** | Without systematic “evals,” failures go unnoticed. | Build automated test suites (e.g., with LangChain, LangGraph, or custom eval scripts) that verify correct tool calls and output formats. |
    | **Workflow design** | Treat the LLM as a *translator* rather than a *decision engine*. | • Extract intent → produce a JSON/action spec → execute deterministic code → have the LLM produce a user‑friendly response. <br>• Cache common replies to avoid unnecessary model calls. |
    | **Alternative UI** | Many suggest a simple button‑driven interface for scheduling. | Use the LLM only for natural‑language front‑end; the back‑end remains a conventional, rule‑based system. |
  4. A user shares their experience running the GPT-OSS 120b model on Ollama with an i7 6700, 64GB DDR4 RAM, RTX 3090, and a 1TB SSD. They note slow initial token generation but acceptable performance overall, highlighting it's possible on a relatively modest setup. The discussion includes comparisons to other hardware configurations, optimization techniques (llama.cpp), and the model's quality.

    >I have a 3090 with 64gb ddr4 3200 RAM and am getting around 50 t/s prompt processing speed and 15 t/s generation speed using the following:
    >
    >`llama-server -m <path to gpt-oss-120b> --ctx-size 32768 --temp 1.0 --top-p 1.0 --jinja -ub 2048 -b 2048 -ngl 99 -fa 'on' --n-cpu-moe 24`
    > This about fills up my VRAM and RAM almost entirely. For more wiggle room for other applications use `--n-cpu-moe 26`.
  5. A post with pithy observations and clear conclusions from building complex LLM workflows, covering topics like prompt chaining, data structuring, model limitations, and fine-tuning strategies.
  6. A Reddit thread discussing preferred local Large Language Model (LLM) setups for tasks like summarizing text, coding, and general use. Users share their model choices (Gemma, Qwen, Phi, etc.) and frameworks (llama.cpp, Ollama, EXUI) along with potential issues and configurations.

    | **Model** | **Use Cases** | **Size (Parameters)** | **Approx. VRAM (Q4 Quantization)** | **Approx. RAM (Q4)** | **Notes/Requirements** |
    |----------------|---------------------------------------------------|------------------------|-----------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
    | **Gemma 3 (Meta)** | Summarization, conversational tasks, image recognition, translation, simple writing | 3B, 4B, 7B, 8B, 12B, 27B+ | 2-4GB (3B), 4-6GB (7B), 8-12GB (12B) | 4-8GB (3B), 8-12GB (7B), 16-24GB (12B) | Excellent performance for its size. Recent versions have had memory leak issues (see Reddit post – use Ollama 0.6.6 or later, but even that may not be fully fixed). QAT versions are highly recommended. |
    | **Qwen 2.5 (Alibaba)** | Summarization, coding, reasoning, decision-making, technical material processing | 3.5B, 7B, 72B | 2-3GB (3.5B), 4-6GB (7B), 26-30GB (72B) | 4-6GB (3.5B), 8-12GB (7B), 50-60GB (72B) | Qwen models are known for strong performance. Coder versions specifically tuned for code generation. |
    | **Qwen3 (Alibaba - upcoming)**| General purpose, likely similar to Qwen 2.5 with improvements | 70B | Estimated 25-30GB (Q4) | 50-60GB | Expected to be a strong competitor. |
    | **Llama 3 (Meta)**| General purpose, conversation, writing, coding, reasoning | 8B, 13B, 70B+ | 4-6GB (8B), 7-9GB (13B), 25-30GB (70B) | 8-12GB (8B), 14-18GB (13B), 50-60GB (70B) | Current state-of-the-art open-source model. Excellent balance of performance and size. |
    | **YiXin (01.AI)** | Reasoning, brainstorming | 72B | ~26-30GB (Q4) | ~50-60GB | A powerful model focused on reasoning and understanding. Similar VRAM requirements to Qwen 72B. |
    | **Phi-4 (Microsoft)** | General purpose, writing, coding | 14B | ~7-9GB (Q4) | 14-18GB | Smaller model, good for resource-constrained environments, but may not match larger models in complexity. |
    | **Ling-Lite** | RAG (Retrieval-Augmented Generation), fast processing, text extraction | Variable | Varies with size | Varies with size | MoE (Mixture of Experts) model known for speed. Good for RAG applications where quick responses are important. |

    **Key Considerations:**

    * **Quantization:** The VRAM and RAM estimates above are based on 4-bit quantization (Q4). Lower quantization (e.g., Q2) will reduce memory usage further, but *may* impact quality. Higher quantization (e.g., Q8, FP16) will increase quality but require significantly more memory.
    * **Frameworks:** Popular frameworks for running these models locally include:
    * **llama.cpp:** Highly optimized for CPU and GPU, especially on Apple Silicon.
    * **Ollama:** Simplified setup and management of LLMs. (Be aware of the Gemma 3 memory leak issue!)
    * **Text Generation WebUI (oobabooga):** Web-based interface with many features and customization options.
    * **Hardware:** A dedicated GPU with sufficient VRAM is highly recommended for decent performance. CPU-only inference is possible but can be slow. More RAM is generally better, even if the model fits in VRAM.
    * **Context Length:** The "40k" context mentioned in the Reddit post refers to the maximum number of tokens (words or sub-words) the model can process at once. Longer context lengths require more memory.
  7. The author discusses the development of a function calling large language model (LLM) that significantly improves latency for agentic applications. This LLM matches or even exceeds the performance of other frontier LLMs. It is integrated into an open-source intelligent gateway for agentic applications, allowing developers to focus on more differentiated aspects of their projects. The model and the gateway are available on Hugging Face and GitHub, respectively.
    2025-01-18 Tags: , , , , , by klotz
  8. The post discusses the feasibility of fine-tuning a decoder-encoder model to translate Egyptian Middle Kingdom hieroglyphics into English. The author suggests that with sufficient training data and a tokenizer that includes Egyptian characters, the model could learn to interpret hieroglyphics fluently. Comments from users mention using plugins and existing knowledge in models as alternatives to fine-tuning.
  9. Discussion in r/LocalLLaMA about finding a self-hosted, local RAG (Retrieval Augmented Generation) solution for large language models, allowing users to experiment with different prompts, models, and retrieval rankings. Various tools and resources are suggested, such as Open-WebUI, kotaemon, and tldw.
    2024-10-13 Tags: , , , , by klotz
  10. "Generate 5 essential questions that, when answered, capture the main points and core meaning of the text. Focus on questions that:

    Address the central theme or argument

    Identify key supporting ideas

    Highlight important facts or evidence

    Reveal the author's purpose or perspective

    Explore any significant implications or conclusions

    Phrase the questions to encourage comprehensive yet concise answers. Present only the questions, numbered and without any additional text."

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: Tags: reddit + llm

About - Propulsed by SemanticScuttle