Tags: llama.cpp* + quantization*

0 bookmark(s) - Sort by: Date ↓ / Title /

  1. A guide on how to download, convert, quantize, and use Llama 3.1 8B model with llama.cpp on a Mac.
    2024-09-28 Tags: , , , by klotz
  2. An explanation of the quant names used in the llama.cpp implementation, as well as information on the different types of quant schemes available.
    2024-06-23 Tags: , , by klotz
  3. Explanation of the new k-quant methods
    The new methods available are:

    GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
    GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
    GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
    GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
    GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
    GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
  4. 2023-06-06 Tags: , , , , by klotz

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: tagged with "llama.cpp+quantization"

About - Propulsed by SemanticScuttle