This paper addresses the misalignment between traditional IR evaluation metrics and the requirements of modern Retrieval-Augmented Generation (RAG) systems. It proposes a novel annotation schema and the UDCG metric to better evaluate retrieval quality for LLM consumers.
This article details the process of building a fast vector search system for a large legal dataset (Australian High Court decisions). It covers choosing embedding providers, performance benchmarks, using USearch and Isaacus embeddings, and the importance of API terms of service. It focuses on achieving speed and scalability while maintaining reasonable accuracy.
IBM is releasing Granite-Docling-258M, an ultra-compact and cutting-edge open-source vision-language model (VLM) for converting documents to machine-readable formats while preserving layout, tables, equations, and more. It's designed for accurate and efficient document conversion and excels beyond simple text extraction.
Plural is bringing AI into the DevOps lifecycle with a new release that leverages a unified GitOps platform as a RAG engine. This provides AI-powered troubleshooting, natural language infrastructure querying, autonomous upgrade assistance, and agentic workflows for infrastructure modification, all with enterprise-grade guardrails.
This article explains the internal workings of vector databases, highlighting that they don't perform a brute-force search as commonly described. It details algorithms like HNSW, IVF, and PQ, the tradeoffs between recall, speed, and memory, and how different RAG patterns impact vector database usage. It also discusses production challenges like filtering, updates, and sharding.
A curated collection of Awesome LLM apps built with RAG, AI Agents, Multi-agent Teams, MCP, Voice Agents, and more. This repository features LLM apps that use models from OpenAI, Anthropic, Google, xAI and open-source models like Qwen or Llama.
The article explores whether combining a command-line agent (like Claude Code or Gemini CLI) with Unix-like file system tools and SemTools is sufficient for complex tasks, particularly document search. It details a benchmark testing the limits of coding agents with and without SemTools, focusing on search, cross-referencing, and temporal analysis. The conclusion is that CLI access is powerful and SemTools enhances agent capabilities for document search and RAG.
Google DeepMind research reveals a fundamental architectural limitation in Retrieval-Augmented Generation (RAG) systems related to fixed-size embeddings. The research demonstrates that retrieval performance degrades as database size increases, with theoretical limits based on embedding dimensionality. They introduce the LIMIT benchmark to empirically test these limitations and suggest alternatives like cross-encoders, multi-vector models, and sparse models.
Nvidia’s NeMo Retriever models and RAG pipeline make quick work of ingesting PDFs and generating reports based on them. Chalk one up for the plan-reflect-refine architecture.
Sparse Priming Representations (SPR) is a research project focused on developing and sharing techniques for efficiently representing complex ideas, memories, or concepts using a minimal set of keywords, phrases, or statements, enabling language models or subject matter experts to quickly reconstruct the original idea with minimal context.