0 bookmark(s) - Sort by: Date ↓ / Title /
A Reddit thread discussing preferred local Large Language Model (LLM) setups for tasks like summarizing text, coding, and general use. Users share their model choices (Gemma, Qwen, Phi, etc.) and frameworks (llama.cpp, Ollama, EXUI) along with potential issues and configurations.
Model | Use Cases | Size (Parameters) | Approx. VRAM (Q4 Quantization) | Approx. RAM (Q4) | Notes/Requirements |
---|---|---|---|---|---|
Gemma 3 (Meta) | Summarization, conversational tasks, image recognition, translation, simple writing | 3B, 4B, 7B, 8B, 12B, 27B+ | 2-4GB (3B), 4-6GB (7B), 8-12GB (12B) | 4-8GB (3B), 8-12GB (7B), 16-24GB (12B) | Excellent performance for its size. Recent versions have had memory leak issues (see Reddit post – use Ollama 0.6.6 or later, but even that may not be fully fixed). QAT versions are highly recommended. |
Qwen 2.5 (Alibaba) | Summarization, coding, reasoning, decision-making, technical material processing | 3.5B, 7B, 72B | 2-3GB (3.5B), 4-6GB (7B), 26-30GB (72B) | 4-6GB (3.5B), 8-12GB (7B), 50-60GB (72B) | Qwen models are known for strong performance. Coder versions specifically tuned for code generation. |
Qwen3 (Alibaba - upcoming) | General purpose, likely similar to Qwen 2.5 with improvements | 70B | Estimated 25-30GB (Q4) | 50-60GB | Expected to be a strong competitor. |
Llama 3 (Meta) | General purpose, conversation, writing, coding, reasoning | 8B, 13B, 70B+ | 4-6GB (8B), 7-9GB (13B), 25-30GB (70B) | 8-12GB (8B), 14-18GB (13B), 50-60GB (70B) | Current state-of-the-art open-source model. Excellent balance of performance and size. |
YiXin (01.AI) | Reasoning, brainstorming | 72B | ~26-30GB (Q4) | ~50-60GB | A powerful model focused on reasoning and understanding. Similar VRAM requirements to Qwen 72B. |
Phi-4 (Microsoft) | General purpose, writing, coding | 14B | ~7-9GB (Q4) | 14-18GB | Smaller model, good for resource-constrained environments, but may not match larger models in complexity. |
Ling-Lite | RAG (Retrieval-Augmented Generation), fast processing, text extraction | Variable | Varies with size | Varies with size | MoE (Mixture of Experts) model known for speed. Good for RAG applications where quick responses are important. |
Key Considerations:
A tutorial on using Qwen2.5–7B-Instruct for creating a local, open-source, multi-agentic RAG system.
The implementation described in the article focuses on creating a multi-agentic Retrieval-Augmented Generation (RAG) system using code agents and the Qwen2.5–7B-Instruct model. The system consists of three agents working together in a hierarchical structure:
Manager Agent: This top-level agent breaks down user questions into sub-tasks, utilizes the Wikipedia search agent to find information, and combines the results to provide a final answer. Its system prompt is tailored to guide it through the process of decomposing tasks and coordinating with other agents.
Wikipedia Search Agent: This agent interacts with the Wikipedia search tool to identify relevant pages and their summaries. It further delegates to the page search agent for detailed information retrieval from specific pages if needed. Its prompt is designed to help it navigate Wikipedia effectively and extract necessary information.
Page Search Agent: This agent specializes in extracting precise information from a given Wikipedia page. It uses a semantic search tool to locate specific passages related to the query.
To implement the multi-agent system efficiently, the article mentions several key decisions and modifications to the default Hugging Face implementation:
By structuring the implementation with these considerations, the system achieves the capability to perform complex, multi-hop question-answering tasks efficiently, despite being powered by a relatively small model running on consumer-grade hardware
First / Previous / Next / Last
/ Page 1 of 0