0 bookmark(s) - Sort by: Date ↓ / Title / - Bookmarks from other users for this tag
A new study reveals that while current AI models excel at solving math problems, they struggle with the reasoning required for mathematical proofs, demonstrating a gap between pattern recognition and genuine mathematical understanding.
This article provides a hands-on guide to Anthropic’s Model Context Protocol (MCP), an open protocol designed to standardize connections between AI systems and data sources. It covers how to set up and use MCP with Claude Desktop and Open WebUI, along with potential challenges and future developments.
A Reddit thread discussing preferred local Large Language Model (LLM) setups for tasks like summarizing text, coding, and general use. Users share their model choices (Gemma, Qwen, Phi, etc.) and frameworks (llama.cpp, Ollama, EXUI) along with potential issues and configurations.
Model | Use Cases | Size (Parameters) | Approx. VRAM (Q4 Quantization) | Approx. RAM (Q4) | Notes/Requirements |
---|---|---|---|---|---|
Gemma 3 (Meta) | Summarization, conversational tasks, image recognition, translation, simple writing | 3B, 4B, 7B, 8B, 12B, 27B+ | 2-4GB (3B), 4-6GB (7B), 8-12GB (12B) | 4-8GB (3B), 8-12GB (7B), 16-24GB (12B) | Excellent performance for its size. Recent versions have had memory leak issues (see Reddit post – use Ollama 0.6.6 or later, but even that may not be fully fixed). QAT versions are highly recommended. |
Qwen 2.5 (Alibaba) | Summarization, coding, reasoning, decision-making, technical material processing | 3.5B, 7B, 72B | 2-3GB (3.5B), 4-6GB (7B), 26-30GB (72B) | 4-6GB (3.5B), 8-12GB (7B), 50-60GB (72B) | Qwen models are known for strong performance. Coder versions specifically tuned for code generation. |
Qwen3 (Alibaba - upcoming) | General purpose, likely similar to Qwen 2.5 with improvements | 70B | Estimated 25-30GB (Q4) | 50-60GB | Expected to be a strong competitor. |
Llama 3 (Meta) | General purpose, conversation, writing, coding, reasoning | 8B, 13B, 70B+ | 4-6GB (8B), 7-9GB (13B), 25-30GB (70B) | 8-12GB (8B), 14-18GB (13B), 50-60GB (70B) | Current state-of-the-art open-source model. Excellent balance of performance and size. |
YiXin (01.AI) | Reasoning, brainstorming | 72B | ~26-30GB (Q4) | ~50-60GB | A powerful model focused on reasoning and understanding. Similar VRAM requirements to Qwen 72B. |
Phi-4 (Microsoft) | General purpose, writing, coding | 14B | ~7-9GB (Q4) | 14-18GB | Smaller model, good for resource-constrained environments, but may not match larger models in complexity. |
Ling-Lite | RAG (Retrieval-Augmented Generation), fast processing, text extraction | Variable | Varies with size | Varies with size | MoE (Mixture of Experts) model known for speed. Good for RAG applications where quick responses are important. |
Key Considerations:
Google’s John Mueller downplayed the usefulness of LLMs.txt, comparing it to the keywords meta tag, as AI bots aren’t currently checking for the file and it opens potential for cloaking.
DeepMind researchers propose a new 'streams' approach to AI development, focusing on experiential learning and autonomous interaction with the world, moving beyond the limitations of current large language models and potentially surpassing human intelligence.
Notte is an open-source browser using an agent, designed to improve speed, cost, and reliability in web agent tasks through a perception layer that structures webpages for LLM consumption. It offers a full stack framework with customizable browser infrastructure, web scripting, and scraping endpoints.
This article details an iterative process of using ChatGPT to explore the parallels between Marvin Minsky's "Society of Mind" and Anthropic's research on Large Language Models, specifically Claude Haiku. The user experimented with different prompts to refine the AI's output, navigating issues like model confusion (GPT-2 vs. Claude) and overly conversational tone. Ultimately, prompting the AI with direct source materials (Minsky’s books and Anthropic's paper) yielded the most insightful analysis, highlighting potential connections like the concept of "A and B brains" within both frameworks.
This blog post details an experiment testing the ability of LLMs (Gemini, ChatGPT, Perplexity) to accurately retrieve and summarize recent blog posts from a specific URL (searchresearch1.blogspot.com). The author found significant issues with hallucinations and inaccuracies, even in models claiming live web access, highlighting the unreliability of LLMs for even simple research tasks.
Newsweek interview with Yann LeCun, Meta's chief AI scientist, detailing his skepticism of current LLMs and his focus on Joint Embedding Predictive Architecture (JEPA) as the future of AI, emphasizing world modeling and planning capabilities.
This repository organizes public content to train an LLM to answer questions and generate summaries in an author's voice, focusing on the content of 'virtual_adrianco' but designed to be extensible to other authors.
First / Previous / Next / Last
/ Page 1 of 0