Researchers from ISTA and Max Planck Institute have uncovered new details about molecular mechanisms driving memory processing at mossy fiber synapses in the hippocampus, crucial for memory formation.
The hippocampus is known to convert short-term memory into long-term memory. The study sheds light on how structural and functional changes in mossy fiber synapses may facilitate the encoding and storage of memories in the hippocampus.
The new research focuses on the mossy fiber synapse, a key connection point between neurons in the hippocampus. The scientists used a novel technique called "Flash and Freeze" combined with freeze fracture labeling to study the dynamic changes in proteins Cav2.1 calcium channels and Munc13 during signal processing. They found that upon stimulation, these proteins rearranged and moved closer together, enhancing neurotransmitter release and potentially contributing to memory formation.
Sleep not only consolidates memories but also resets the brain’s memory storage mechanism. This process, governed by specific regions in the hippocampus, allows neurons to prepare for new learning without being overwhelmed, opening potential pathways for enhancing memory and treating neurological disorders.
The article discusses the limitations of Large Language Models (LLMs) in planning and self-verification tasks, and proposes an LLM-Modulo framework to leverage their strengths in a more effective manner. The framework combines LLMs with external model-based verifiers to generate, evaluate, and improve plans, ensuring their correctness and efficiency.
"Simply put, we take the stance that LLMs are amazing giant external non-veridical memories that can serve as powerful cognitive orthotics for human or machine agents, if rightly used."