Large Language Models (LLMs) demonstrate remarkable capabilities, yet their inability to maintain persistent memory in long contexts limits their effectiveness as autonomous agents in long-term interactions. While existing memory systems have made progress, their reliance on arbitrary granularity for defining the basic memory unit and passive, rule-based mechanisms for knowledge extraction limits their capacity for genuine learning and evolution. To address these foundational limitations, we present Nemori, a novel self-organizing memory architecture inspired by human cognitive principles. Nemori's core innovation is twofold: First, its Two-Step Alignment Principle, inspired by Event Segmentation Theory, provides a principled, top-down method for autonomously organizing the raw conversational stream into semantically coherent episodes, solving the critical issue of memory granularity. Second, its Predict-Calibrate Principle, inspired by the Free-energy Principle, enables the agent to proactively learn from prediction gaps, moving beyond pre-defined heuristics to achieve adaptive knowledge evolution. This offers a viable path toward handling the long-term, dynamic workflows of autonomous agents. Extensive experiments on the LoCoMo and LongMemEval benchmarks demonstrate that Nemori significantly outperforms prior state-of-the-art systems, with its advantage being particularly pronounced in longer contexts.
This outlines the emergence of an "agentic economy" on Ethereum, powered by AI agents, and the infrastructure being built to support it. It details the potential for autonomous economic activity and the challenges of building a secure and reliable system.
LocalAI is a free and open-source AI stack that allows you to run language models, autonomous agents, and document intelligence locally on your hardware. It's an OpenAI API-compatible alternative focused on privacy, ease of use, and extensibility.