Tags: numpy*

0 bookmark(s) - Sort by: Date ↓ / Title /

  1. Pandas 3.0 will significantly boost performance by replacing NumPy with PyArrow as its default engine, enabling faster loading and reading of columnar data.
  2. This article discusses how to improve the performance of Pandas operations by using vectorization with NumPy. It highlights alternatives to the apply() method on larger dataframes and provides examples of using NumPy's lesser-known methods like where and select to handle complex if/then/else conditions efficiently.
  3. 2021-10-24 Tags: , , , by klotz
  4. 2021-10-09 Tags: , , by klotz
  5. 2021-10-09 Tags: , , by klotz
  6. >>> from sklearn.neighbors import NearestCentroid
    >>> import numpy as np
    >>> X = np.array( [-1, -1 » , -2, -1 » , -3, -2 » , 1, 1 » , 2, 1 » , 3, 2 » ])
    >>> y = np.array( 1, 1, 1, 2, 2, 2 » )
    >>> clf = NearestCentroid()
    >>> clf.fit(X, y)
    NearestCentroid()
    >>> print(clf.predict( [-0.8, -1 » ]))
    1 »
    2021-09-02 Tags: , , , , by klotz
  7. 2018-08-08 Tags: , , , , by klotz
  8. 2018-08-02 Tags: , , , by klotz
  9. 2016-03-17 Tags: , , , , by klotz

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: tagged with "numpy"

About - Propulsed by SemanticScuttle