Tags: scikit-learn*

0 bookmark(s) - Sort by: Date ↓ / Title /

  1. The article discusses using Large Language Model (LLM) embeddings as features in traditional machine learning models built with scikit-learn. It covers the process of generating embeddings from text data using models like Sentence Transformers, and how these embeddings can be combined with existing features to improve model performance. It details practical steps including loading data, creating embeddings, and integrating them into a scikit-learn pipeline for tasks like classification.
  2. The article showcases concise Python code snippets (one-liners) for common machine learning tasks like data splitting, standardization, model training (linear regression, logistic regression, decision tree, random forest), and prediction, leveraging libraries such as scikit-learn.

    | **#** | **One-Liner** | **Description** | **Library** | **Use Case** |
    |-----|-----------------------------------------------------|-------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|
    | 1 | `from sklearn.datasets import load_iris; X, y = load_iris(return_X_y=True)` | Loads the Iris dataset, a classic for classification. | scikit-learn | Loading a standard dataset. |
    | 2 | `from sklearn.model_selection import train_test_split; X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)` | Splits the dataset into training and testing sets. | scikit-learn | Preparing data for model training & evaluation.|
    | 3 | `from sklearn.linear_model import LogisticRegression; model = LogisticRegression(random_state=1)` | Creates a Logistic Regression model. | scikit-learn | Binary Classification. |
    | 4 | `model.fit(X_train, y_train)` | Trains the Logistic Regression model. | scikit-learn | Model training. |
    | 5 | `y_pred = model.predict(X_test)` | Predicts labels for the test dataset. | scikit-learn | Making predictions. |
    | 6 | `from sklearn.metrics import accuracy_score; accuracy = accuracy_score(y_test, y_pred)` | Calculates the accuracy of the model. | scikit-learn | Evaluating model performance. |
    | 7 | `import pandas as pd; df = pd.DataFrame(X, columns=iris.feature_names)` | Creates a Pandas DataFrame from the Iris dataset features. | Pandas | Data manipulation and analysis. |
    | 8 | `df 'target' » = y` | Adds the target variable to the DataFrame. | Pandas | Combining features and labels. |
    | 9 | `df.head()` | Displays the first few rows of the DataFrame. | Pandas | Inspecting the data. |
    | 10 | `df.describe()` | Generates descriptive statistics of the DataFrame. | Pandas | Understanding data distribution. |
  3. This example demonstrates Density-Based Spatial Clustering of Applications with Noise (DBSCAN) using scikit-learn, showing how to generate synthetic clusters, compute DBSCAN clustering, and visualize the results, including core and non-core samples.
  4. emlearn is an open-source machine learning inference engine designed for microcontrollers and embedded devices. It supports various machine learning models for classification, regression, unsupervised learning, and feature extraction. The engine is portable, with a single header file include, and uses C99 code and static memory allocation. Users can train models in Python and convert them to C code for inference.
  5. Scikit-learn — the go-to library for machine learning offering a user friendly, consistent interface.
    Pycaret — lowering the entry point for machine learning with low code, automated and end to end solutions.
    PyTorch — build and deploy powerful, scalable neural networks with its highly flexible architecture.
    TensorFlow — one of the most mature deep learning libraries, highly flexible and suited to a wide range of applications.
    Keras — TensorFlow made simple.
    FastAI — makes deep learning more accessible with a high-level API built on top of PyTorch.
  6. Comparing Clustering Algorithms
    Following table will give a comparison (based on parameters, scalability and metric) of the clustering algorithms in scikit-learn.

    Sr.No Algorithm Name Parameters Scalability Metric Used
    1 K-Means No. of clusters Very large n_samples The distance between points.
    2 Affinity Propagation Damping It’s not scalable with n_samples Graph Distance
    3 Mean-Shift Bandwidth It’s not scalable with n_samples. The distance between points.
    4 Spectral Clustering No.of clusters Medium level of scalability with n_samples. Small level of scalability with n_clusters. Graph Distance
    5 Hierarchical Clustering Distance threshold or No.of clusters Large n_samples Large n_clusters The distance between points.
    6 DBSCAN Size of neighborhood Very large n_samples and medium n_clusters. Nearest point distance
    7 OPTICS Minimum cluster membership Very large n_samples and large n_clusters. The distance between points.
    8 BIRCH Threshold, Branching factor Large n_samples Large n_clusters The Euclidean distance between points.
  7. 2021-09-25 Tags: by klotz
  8. Linear Regression
    Multiple Regression
    Polynomial Regression
    Decision Tree
    Logistic Regression
    K Nearest Neighbor
    Naive Bayes
    Random Forest
    Support Vector Machines
    Principal Component Analysis
    Linear Discriminant Analysis
    K Means Clustering
    Hierarchical Clustering

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: tagged with "scikit-learn"

About - Propulsed by SemanticScuttle