0 bookmark(s) - Sort by: Date ↓ / Title / - Bookmarks from other users for this tag
The article discusses the security risks and challenges associated with the increasing use of AI agents in enterprise workflows. It highlights concerns about data access, privacy, and the potential for new vulnerabilities in multi-agent systems. Experts emphasize the need for careful management of agent identities and access permissions to mitigate risks.
Sergey Pletenev et al. explore the integration of new knowledge into Large Language Models (LLMs) using Low-Rank Adaptation (LoRA). The study focuses on fine-tuning the Llama-3.1-8B-instruct model with varying amounts of new information while aiming to retain previously learned knowledge. The researchers found that mixing known and new facts in training data yields the best results but also noted potential drawbacks, such as a decline in performance on external benchmarks and a bias towards overrepresented answers when the data is skewed. Additionally, the model sometimes becomes overly confident and hesitant to answer. These findings emphasize the need for careful consideration of training data composition and tuning parameters to balance the incorporation of new knowledge with maintaining overall model capabilities.
Solomon Hykes, creator of Docker and CEO of Dagger, advocates for containerizing AI agents to manage complexity and enhance reusability. At Sourcegraph’s AI Tools Night, he demonstrated building an AI agent and a cURL clone using Dagger's container-based approach, emphasizing the benefits of standardization and debuggability.
An experiment in agentic AI development, where AI tools were tasked with building and maintaining a full-service product, ObjectiveScope, without direct human code modifications. The process highlighted the challenges and constraints of AI-driven development, such as deteriorating context management, technical limitations, and the need for precise prompt engineering.
Qwen2.5-VL is a flagship model of the Qwen vision-language series, showcasing advancements in visual recognition, object localization, document parsing, and long-video comprehension. It introduces dynamic resolution processing and absolute time encoding, allowing it to handle complex inputs and maintain native resolution. Available in three sizes, it suits various applications from edge AI to high-performance computing, matching state-of-the-art models in document and diagram understanding while preserving strong linguistic capabilities.
This article explores the use of Google's NotebookLM (NLM) as a tool for research, particularly in analyzing the impact of the Aswan High Dam on schistosomiasis in Egypt. The author details how NLM can be used to create a research assistant-like experience, allowing users to 'have a conversation' with uploaded content to gain insights and answers from the material.
SmolVLM2 represents a shift in video understanding technology by introducing efficient models that can run on various devices, from phones to servers. The release includes models of three sizes (2.2B, 500M, and 256M) with Python and Swift API support. These models offer video understanding capabilities with reduced memory consumption, supported by a suite of demo applications for practical use.
The article delves into how large language models (LLMs) store facts, focusing on the role of multi-layer perceptrons (MLPs) in this process. It explains the mechanics of MLPs, including matrix multiplication, bias addition, and the Rectified Linear Unit (ReLU) function, using the example of encoding the fact that Michael Jordan plays basketball. The article also discusses the concept of superposition, which allows models to store a vast number of features by utilizing nearly perpendicular directions in high-dimensional spaces.
Arc Institute develops Evo 2, the largest AI model in biology to date, trained on over 9.3 trillion nucleotides from 128,000 genomes. It can identify disease-causing mutations and design new genomes, with applications in genetic analysis and engineering treatments.
Augment Code is an AI coding assistant aimed specifically at professional software engineers and large codebases, offering features like project summaries, code improvements, and real-time code completions. It is designed to enhance productivity by understanding the context and style of your project, providing useful suggestions and improvements.
First / Previous / Next / Last
/ Page 1 of 0