klotz: observability*

Observability refers to the ability to understand the internal state of a system by observing its output. It involves monitoring, logging, and tracing various other forms of data collection to gain insights into the system's behavior, performance, and health. In the context of cloud engineering, observability is crucial for maintaining the efficiency and reliability of distributed systems, as it helps identify and diagnose issues, optimize performance, and ensure security. Observability tools, such as Splunk, Honeycomb, and OpenTelemetry, are used to collect and analyze metrics, logs, and traces, enabling capacity planning, root cause analysis and incident response.

0 bookmark(s) - Sort by: Date โ†“ / Title / - Bookmarks from other users for this tag

  1. This article details how Nubank built its own in-house logging platform to address issues of cost, scalability, and control over their logging infrastructure. Initially reliant on a vendor solution, they found costs rising unpredictably and experienced limitations in observability and data retention.

    To solve this, Nubank divided the project into two major steps: **The Observability Stream** (ingestion and processing) and the **Query & Log Platform** (storage and querying).

    * **Observability Stream:** Fluent Bit for data collection, a Data Buffer Service for micro-batching, and an in-house Filter & Process Service.
    * **Query & Log Platform:** Trino as the query engine, AWS S3 for storage, and Parquet for data format.

    The new platform currently ingests 1 trillion logs daily, stores 45 PB of searchable data with a 45-day retention, and handles almost 15,000 queries daily. Nubank reports the platform costs 50% less than comparable market solutions while providing them with greater control, scalability, and the ability to customize features. The project underscored Nubank's value of challenging the status quo and leveraging a combination of open-source and in-house development.
  2. This article explores how prompt engineering can be used to improve time-series analysis with Large Language Models (LLMs), covering core strategies, preprocessing, anomaly detection, and feature engineering. It provides practical prompts and examples for various tasks.
  3. A study by ClickHouse found that large language models (LLMs) aren't currently capable of replacing Site Reliability Engineers (SREs) for incident root cause analysis, despite advancements in AI. LLMs can be helpful tools, but require human oversight.
  4. Google Cloud has announced native support for the OpenTelemetry Protocol (OTLP) in its Cloud Trace service, allowing developers to send trace data directly using OTLP and eliminating the need for vendor-specific exporters. This includes increased storage limits for attributes and spans.
  5. Replays of the .conf25 Global Broadcast sessions, including the Welcome Keynote, Product Keynote, and various sessions covering topics like AI, security, observability, and Splunk platform updates.
  6. TraceRoot.AI is an AI-native observability platform that helps developers fix production bugs faster by analyzing structured logs and traces. It offers SDK integration, AI agents for root cause analysis, and a platform for comprehensive visualizations.
  7. TraceRoot accelerates the debugging process with AI-powered insights. It integrates seamlessly into your development workflow, providing real-time trace and log analysis, code context understanding, and intelligent assistance. It offers both a cloud and self-hosted version, with SDKs available for Python and JavaScript/TypeScript.
  8. The article discusses the emergence of 'agentic traffic' โ€“ outbound API calls made by autonomous AI agents โ€“ and the need for a new infrastructure layer, an 'AI Gateway', to govern and secure this traffic. It outlines the components of an AI Gateway and the importance of security, compliance, and observability in managing agentic AI.
  9. The company's transition from fragmented observability tools to a unified system using OpenTelemetry and OneUptime dramatically improved incident response times, reducing MTTR from 41 to 9 minutes. By correlating logs, metrics, and traces through structured logging and intelligent sampling, they eliminated much of the noise and confusion that previously slowed root cause analysis. The shift also reduced the number of dashboards engineers needed to check per incident and significantly lowered the percentage of incidents with unknown causes.

    Key practices included instrumenting once with OpenTelemetry, enforcing cardinality limits, and archiving raw data for future analysis. The move away from 100% trace capture and over-instrumentation helped manage data volume while maintaining visibility into anomalies. This transformation emphasized that effective observability isn't about collecting more data, but about designing correlated signals that support intentional diagnosis and reduce cognitive load.
  10. **Experiment Goal:** Determine if LLMs can autonomously perform root cause analysis (RCA) on live application

    Five LLMs were given access to OpenTelemetry data from a demo application,:
    * They were prompted with a naive instruction: "Identify the issue, root cause, and suggest solutions."
    * Four distinct anomalies were used, each with a known root cause established through manual investigation.
    * Performance was measured by: accuracy, guidance required, token usage, and investigation time.
    * Models: Claude Sonnet 4, OpenAI GPT-o3, OpenAI GPT-4.1, Gemini 2.5 Pro

    * **Autonomous RCA is not yet reliable.** The LLMs generally fell short of replacing SREs. Even GPT-5 (not explicitly tested, but implied as a benchmark) wouldn't outperform the others.
    * **LLMs are useful as assistants.** They can help summarize findings, draft updates, and suggest next steps.
    * **A fast, searchable observability stack (like ClickStack) is crucial.** LLMs need access to good data to be effective.
    * **Models varied in performance:**
    * Claude Sonnet 4 and OpenAI o3 were the most successful, often identifying the root cause with minimal guidance.
    * GPT-4.1 and Gemini 2.5 Pro required more prompting and struggled to query data independently.
    * **Models can get stuck in reasoning loops.** They may focus on one aspect of the problem and miss other important clues.
    * **Token usage and cost varied significantly.**

    **Specific Anomaly Results (briefly):**

    * **Anomaly 1 (Payment Failure):** Claude Sonnet 4 and OpenAI o3 solved it on the first prompt. GPT-4.1 and Gemini 2.5 Pro needed guidance.
    * **Anomaly 2 (Recommendation Cache Leak):** Claude Sonnet 4 identified the service restart issue but missed the cache problem initially. OpenAI o3 identified the memory leak. GPT-4.1 and Gemini 2.5 Pro struggled.

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: Tags: observability

About - Propulsed by SemanticScuttle