Tags: llm* + nlp*

0 bookmark(s) - Sort by: Date ↓ / Title /

  1. This article is part of a series titled ‘LLMs from Scratch’, a complete guide to understanding and building Large Language Models (LLMs). In this article, we discuss the self-attention mechanism and how it is used by transformers to create rich and context-aware transformer embeddings.

    The Self-Attention mechanism is used to add context to learned embeddings, which are vectors representing each word in the input sequence. The process involves the following steps:

    1. Learned Embeddings: These are the initial vector representations of words, learned during the training phase. The weights matrix, storing the learned embeddings, is stored in the first linear layer of the Transformer architecture.

    2. Positional Encoding: This step adds positional information to the learned embeddings. Positional information helps the model understand the order of the words in the input sequence, as transformers process all words in parallel, and without this information, they would lose the order of the words.

    3. Self-Attention: The core of the Self-Attention mechanism is to update the learned embeddings with context from the surrounding words in the input sequence. This mechanism determines which words provide context to other words, and this contextual information is used to produce the final contextualized embeddings.
  2. In this article, we will explore various aspects of BERT, including the landscape at the time of its creation, a detailed breakdown of the model architecture, and writing a task-agnostic fine-tuning pipeline, which we demonstrated using sentiment analysis. Despite being one of the earliest LLMs, BERT has remained relevant even today, and continues to find applications in both research and industry.
  3. This article discusses Retrieval-Augmented Generation (RAG) models, a new approach that addresses the limitations of traditional models in knowledge-intensive Natural Language Processing (NLP) tasks. RAG models combine parametric memory from pre-trained seq2seq models with non-parametric memory from a dense vector index of Wikipedia, enabling dynamic knowledge access and integration.
  4. This article explains how to use the Sentence Transformers library to finetune and train embedding models for a variety of applications, such as retrieval augmented generation, semantic search, and semantic textual similarity. It covers the training components, dataset format, loss function, training arguments, evaluators, and trainer.
  5. "The paper introduces a technique called LoReFT (Low-rank Linear Subspace ReFT). Similar to LoRA (Low Rank Adaptation), it uses low-rank approximations to intervene on hidden representations. It shows that linear subspaces contain rich semantics that can be manipulated to steer model behaviors."
  6. Learn about function calling in Large Language Models (LLMs) and the list of commercial and open source LLMs suitable for function calling.
    2024-05-21 Tags: , , by klotz
  7. Researchers from NYU Tandon School of Engineering investigated whether modern natural language processing systems could solve the daily Connections puzzles from The New York Times. The results showed that while all the AI systems could solve some of the puzzles, they struggled overall.
  8. This article provides a beginner-friendly introduction to Large Language Models (LLMs) and explains the key concepts in a clear and organized way.
    2024-05-10 Tags: , , , , , by klotz
  9. LangChain has many advanced retrieval methods to help address these challenges. (1) Multi representation indexing: Create a document representation (like a summary) that is well-suited for retrieval (read about this using the Multi Vector Retriever in a blog post from last week). (2) Query transformation: in this post, we'll review a few approaches to transform humans questions in order to improve retrieval. (3) Query construction: convert human question into a particular query syntax or language, which will be covered in a future post
    2024-05-06 Tags: , , , by klotz
  10. This article explores how to boost the performance of small language models by using supervision from larger ones through knowledge distillation. The article provides a step-by-step guide on how to distill knowledge from a teacher model (LLama 2–70B) to a student model (Tiny-LLama) using unlabeled in-domain data and targeted prompting.

Top of the page

First / Previous / Next / Last / Page 1 of 0 SemanticScuttle - klotz.me: tagged with "llm+nlp"

About - Propulsed by SemanticScuttle