An analysis of the current LLM landscape in 2026, focusing on the shift from 'vibe coding' to more efficient and controlled workflows for software development and data analysis. The author advocates for tools like AI Studio and OpenCode, and discusses the strengths of models like Gemini 2.5 Pro and Claude Sonnet.
A review of the SearchResearch blog's 2025 posts, highlighting a shift towards AI-augmented research methods, testing AI tools, and emphasizing the importance of verification and critical thinking in online research.
Nemo Agent Toolkit simplifies building production-ready LLM applications by providing tools for creating, managing, and deploying agents. It offers features like memory management, tool usage, and observability, making it easier to integrate LLMs into real-world applications.
Orange Pi has announced the Orange Pi AI Station, a compact edge computing platform featuring the Ascend 310 processor, offering up to 176 TOPS of AI compute performance with options for up to 96GB of LPDDR4X memory and NVMe storage.
A comprehensive overview of the current state of Multi-Concept Prompting (MCP), including advancements, challenges, and future directions.
LLM Council works together to answer your hardest questions. A local web app that uses OpenRouter to send queries to multiple LLMs, have them review/rank each other's work, and finally a Chairman LLM produces the final response.
This article details how the author successfully ran OpenAI's Codex CLI against a gpt-oss:120b model hosted on an NVIDIA DGX Spark, accessed through a Tailscale network. It covers the setup of Tailscale, Ollama configuration, and the process of running the Codex CLI with the remote model, including building a Space Invaders game.
Researchers at MIT’s CSAIL are charting a more "modular" path ahead for software development, breaking systems into "concepts" and "synchronizations" to make code clearer, safer, and easier for LLMs to generate.
MIT researchers are proposing a new software development approach centered around "concepts" and "synchronizations" to address issues of complexity, safety, and LLM compatibility in modern software.
Concepts are self-contained units of functionality (like "sharing" or "liking") with their own state and actions, whereas synchronizations are explicit rules defining how these concepts interact, expressed in a simple, LLM-friendly language.
The benefits include ncreased modularity, transparency, easier understanding for both humans and AI, improved safety, and potential for automated software development. Real-world application: has been demonstrated by successfully restructuring features (liking, commenting, sharing) to be more modular and legible.
Future includes concept catalogs, a shift in software architecture, and improved collaboration through shared, well-tested concepts.
This GitHub repository directory contains resources for evaluating Large Language Models (LLMs), including a Jupyter Notebook demonstrating how to use LLM Arena as a judge and a Python script for the same purpose. It also includes a README file with instructions on how to view the notebook if it doesn't render correctly on GitHub.
An Apple study shows that large language models (LLMs) can improve performance by using a checklist-based reinforcement learning scheme, similar to a simple productivity trick of checking one's work.